Spanning cycles in regular matroids without M*(K5) minors
نویسندگان
چکیده
Catlin and Jaeger proved that the cycle matroid of a 4-edge-connected graph has a spanning cycle. This result can not be generalized to regular matroids as there exist infinitely many connected cographic matroids, each of which contains a M(K5) minor and has arbitrarily large cogirth, that do not have spanning cycles. In this paper, we proved that if a connected regular matroid without aM(K5)-minor has cogirth at least 4, then it has a spanning cycle.
منابع مشابه
On the Excluded Minors for the Matroids That Are Either Binary or Ternary
The classes of binary and ternary matroids are both relatively well understood as is their intersection, the class of regular matroids. This paper considers the union M of the classes of binary and ternary matroids. M is a minor-closed class and the focus of the paper is on determining its set of excluded minors. It is conjectured here that this set of excluded minors unique matroids that are o...
متن کاملNowhere zero 4-flow in regular matroids
Jensen and Toft [10] conjectured that every 2-edge-connected graph without a K5minor has a nowhere zero 4-flow. Walton and Welsh [24] proved that if a coloopless regular matroid M does not have a minor in {M(K3,3),M(K5)}, then M admits a nowhere zero 4-flow. In this note, we prove that if a coloopless regular matroid M does not have a minor in {M(K5),M(K5)}, then M admits a nowhere zero 4-flow....
متن کاملThe Regular Excluded Minors for Signed-Graphic Matroids
We show that the complete list of regular excluded minors for the class of signed-graphic matroids is M(G1), . . . ,M(G29), R15, R16. Here G1, . . . , G29 are the vertically 2-connected excluded minors for the class of projective-planar graphs.
متن کاملDetecting minors in matroids through triangles
In this note we investigate some matroid minor structure results. In particular, we present sufficient conditions, in terms of triangles, for a matroid to have either U2,4 or F7 or M(K5) as a minor.
متن کاملThe excluded minors for the class of matroids that are binary or ternary
We show that the excluded minors for the class of matroids that are binary or ternary are U2,5, U3,5, U2,4⊕F7, U2,4⊕F ∗ 7 , U2,4⊕2F7, U2,4 ⊕2 F ∗ 7 , and the unique matroids obtained by relaxing a circuithyperplane in either AG(3, 2) or T12. The proof makes essential use of results obtained by Truemper on the structure of almost-regular matroids.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Eur. J. Comb.
دوره 29 شماره
صفحات -
تاریخ انتشار 2008